Different mix designs are carried out and compressive strength is determined. The maximum compressive strength obtained in 28 days is 21 ksi.

2. Objectives
- To demonstrate the effectiveness of the Ultra-High Performance Concrete (UHPC) encasement to restore the lost steel H-pile axial capacity.
- To evaluate the bond strength of UHPC and steel H-pile with headed studs.
- To propose innovative method of retrofitting for corroded steel H-pile.

3. Why UHPC
- High early strength allow reduce the construction delay.
- Durability when exposed to moisture, freeze thaw conditions.
- Flowability of UHPC allow the concrete to be poured to encase complex geometries without clogging.
- Crack resistance resulting from its high tensile strength.
- Fatigue resistance

4. Mix Design
- Based on literature review, different mix designs are implemented.
- Best mix design having better strength and flowability is selected for the experiment work.

5. Preparation of Mold
- Precast UHCP mold
- Cast-in-place UHCP mold

6. UHPC Encasement Method
- Precast UHCP Encasement
- Cast-in-place UHCP Encasement

7. Push-out Test
- The steel H-pile having shear studs is encased with UHPC and the push test is conducted.

8. Findings and Conclusion
- Different mix designs are carried out and compressive strength is determined.
- The maximum compressive strength obtained in 28 days is 21 ksi.
- The steel H-pile having shear studs is encased with UHPC and the push test is conducted.

10. Acknowledgement
- Missouri Department of Transportation (MoDOT)
- Mid-America Transportation Center (MATC)