Introduction

- Machine Learning (ML): A computer algorithm learns "cause-effect" correlations during training, and then leverages such knowledge to make predictions in new data-domains.

- Types of machine learning algorithms:
 - Supervised learning: The algorithm trains the machine using the training dataset, and generate reasonable predictions for the response to the new dataset.
 - Unsupervised learning: Find the underlying structure or distribution of the dataset without any training process.

- Applications:
 - Online recommendation offer
 - Self-Driving car

Why ML for Concrete?

- Extremely large compositional degrees of freedom (i.e., permutations and combinations of mixture design variables can significantly influence on properties).
- Materials theory based models cannot make a good prediction on properties of concrete (i.e., chloride concentration on the surface of concrete (Figure 1)).
- Non-linear relationships between mixture design variables and properties of concrete (i.e., coarse aggregate content vs. modulus of elasticity (Figure 2)).

Results

- Figure A-C shows that three machine learning models predicted modulus of elasticity (MOE) of concrete. The RF model exhibits the best performance.
- Figure D-F shows that three machine learning models predicted chloride concentration on the surface of concrete (C_{cl}) under three environments. The RF model exhibits the best performance.
- Figure G-I shows that three machine learning models predicted the compressive strength of concrete. The RF model exhibits the best performance.

Acknowledgments

The author gratefully acknowledge the financial support provided by the National Science Foundation (NSF) and the Leonard Wood Institute (LWI).

References